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Abstract In this paper we develop a directed testing procedure
for the coe�cient function of the Functional Linear Model (FLM)
with a scalar response. The suggested procedure provides local inter-
pretability of the regression function in the sense that it is possible
to infer from the data a subinterval of the random function's do-
main where the relationship between random curves and the scalar
outcome variable di�ers from a null. The test is motivated from a
situation where it can be assumed that the relationship is strongest
at the beginning of the domain and it is of interest to �nd a subset of
the domain where the relationship is statistically signi�cant. Our real
data application in the �eld of biomechanics is an example for such
a situation. We show theoretical validity of our proposed procedure
and evaluate the method by means of a simulation study.

1. Introduction. With the increasing availability of data collected on a

dense grid, functional data analysis (FDA) has become an important �eld in

statistics in recent years. The corresponding literature comprises numerous

theoretical contributions and various interesting applications. In particular,

the functional linear regression model with a scalar dependent variable is

quite popular and has seen many applications in di�erent areas (see Ullah

and Finch, 2013, for an overview of various �elds of application).

It is well known, however, that regression models with a functional predic-

tor belong to the class of ill-posed inversion problems and that every estimate

has to use some sort of regularisation. As a result, local inference in the func-

tional linear model is a di�cult issue. More speci�cally, Cardot et al. (2007a)

show that it is impossible to derive a CLT for the estimated functional coef-

�cient function. As a consequence, it is also not possible to draw pointwise

inference about the functional coe�cient, even asymptotically.

This does not mean that statistical tests for the parameter function are

not possible in general. Indeed, there are several approaches to test whether

the coe�cient function deviates globally from a given null hypothesis. For in-

stance, Cardot et al. (2003); Cardot, Goia and Sarda (2004) use properties of

the cross-covariance operator, Swihart, Goldsmith and Crainiceanu (2014);
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Kong, Staicu and Maity (2016) adapt classical methods such as likelihood-

ratio and F tests to the functional case, and González-Manteiga et al. (2012)

build on bootstrap techniques to construct such a global test. With these

tests, however, it is only possible to �nd out whether the relationship be-

tween the functional predictors and the scalar outcome variable deviates

from a prespeci�ed null. The most important speci�c case, for instance, is

the test of association in the functional linear model, where the null hypoth-

esis corresponds to the zero function as functional coe�cient.

Though, if the global test leads to a rejection, it is still not clear, whether

the functional coe�cient deviates from the null on the whole domain or is

only di�erent on a subpart of the domain. Therefore, a rejection of the global

test does not uncover parts of the domain where the functional coe�cient

di�ers almost everywhere from a null coe�cient. Evidently, this is an impor-

tant shortcoming of the scalar-on-function regression model for practitioners

that are interested in identifying subdomains where a functional covariate is

related signi�cantly to the scalar response.

An important contribution into this direction is the paper of Hall and

Hooker (2016). Using their method, it is possible to consistently estimate

the support of the coe�cient function (that is, the the part of the domain

where the coe�cient function is di�erent from zero). Very brie�y, they also

discuss the possibility of constructing a con�dence interval for the boundaries

of the support, based on the bootstrap. However, in their discussion, they

also raise the issue that using the bootstrap is not appropriate in the context

of smoothing. Again, this leaves the practitioner only with a point estimate.

We present an approach that shows one possibility to overcome these

limitations under some additional assumptions about the structure of the

coe�cient function. Our testing procedure then is able to uncover a subin-

terval of the functional domain where the coe�cient function is statistically

di�erent from zero almost everywhere. The underlying idea is to apply the

global test sequentially on a family of subsets of the domain such that the

family-wise error rate is controlled. The performance of available approaches

for the global test is compared in Tekbudak et al. (2019), showing favor-

able properties of the F test suggested by Kong, Staicu and Maity (2016).

Therefore, our method builds on this F test, although it might be replaced

by other versions of the global test.

Inference in the functional regression model with scalar response has also

been addressed by several other authors. In a generalised model framework,

Müller and Stadtmüller (2005) propose (simultaneous) con�dence bands for

the coe�cient function. These con�dence bands though also re�ect the global

test and cannot be interpreted pointwise. Reiss and Ogden (2007) compute
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con�dence intervals to illustrate the pointwise variability of the estimated

coe�cients in a simulation study which, however, cannot be used for infer-

ence. Imaizumi and Kato (2019) also propose simultaneous con�dence bands

which are based on weakened requirements for the coverage probability. It

is, however, in general di�cult to construct con�dence regions for random

elements in in�nite dimensional Hilbert spaces (Choi and Reimherr, 2018).

The literature related to the scalar-on-function regression model is exten-

sive and we refer to Reiss et al. (2017) for an overview of di�erent methods.

For readers with a general interest in FDA, the books by Ramsay and Sil-

verman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), and

Hsing and Eubank (2015) provide a broad overview of available methods.

The remainder of this article is organized as follows. In Section 2, we in-

troduce the model framework. The main results are given in Section 3, where

we extend the global F test to a spline basis and introduce the sequential

testing procedure. In that section, we also present our theoretical results. In

Section 4 we illustrate the properties of the suggested method by means of a

simulation study, and present a real data application in Section 5. Section 6

concludes.

2. Model framework. We consider the functional linear model (FLM)

with a scalar response variable

(1) Yi = β0 +

∫
D
β(t)Xi(t) dt+ εi,

re�ecting the dependency between observations of a scalar variable, Y1, . . . , Yn,
and a functional covariate X1, . . . , Xn, the latter taking values in the Hilbert

space L2(D). Without loss of generality, we set D = [0, 1] and assume for

notational simplicity that E(Yi) = 0 and E(Xi) = 0 ∈ L2, omitting the

intercept, β0 hereafter. For the error term we assume that the εi's are i.i.d.
centered (E(εi) = 0) random variables with variance V ar(εi) = σ2 < ∞,

and are independent of the Xi. The function-valued slope parameter β ∈ L2

quanti�es the e�ect of the functional predictors on the scalar outcome vari-

able, and, very often is of central interest. Due to the reasons lined out above,

available methods only leave a practitioner with a point estimate and the

information whether the relationship between Xi and Yi is signi�cant at a
given con�dence level. While the method of Hall and Hooker (2016) makes

it also possible to estimate a subinterval [0, θ] of the original domain where

β(t) 6= 0, it cannot tell whether the function over the estimated support is al-

most everywhere statistically di�erent from zero at a given signi�cance level.
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This, however, is of practical importance for the structural interpretation of

β.
In some applications, it can be reasonable to assume that if there is a

linear dependence between the scalar response and the functional covariate,

it must be strongest at one boundary of the domain. For instance, if one can

assume that |β| is a monotonically decreasing function, it is then possible

to construct a sequential test procedure that is capable to identify a subset

of the domain, [0, τ∗] ∈ [0, 1] where at a prespeci�ed level α, it holds that
the function β(t) 6= 0 for almost every t ∈ [0, τ∗]. Although in our view the

assumption of a monotonic |β| is the most important case in practice, one

can also get qualitatively the same results under the weaker assumption 6.1

of Hall and Hooker (2016).

Before we introduce the test approach, let us de�ne the basic notation.

To this end, it is assumed that all realizations of the functional covariate are

observed on the same grid values t1, . . . , tp, with t1 = 1
2p , ti − ti−1 = 1

p . In

the n× p matrix X, we collect the functional observations and the n-vector
Y holds the observations of the dependent variable.

3. Testing procedure and theoretical results. To formulate our test

procedure, we make the following assumption about the coe�cient function

β.

(2)
The functional coe�cient β is continuous on [0, 1], the absolute
value,|β|, is monotonically decreasing, and there exists a τ ∈ [0, 1]
such that β(t) 6= 0 for almost all t ∈ [0, τ ].

Under this assumption, the following procedure is able to �nd the largest

number τ∗ ∈ [0, τ ] such that β is statistically di�erent from zero on the

interval [0, τ∗] at a prede�ned signi�cance level α. The core idea of the test

procedure is to split the domain into two parts, [0, tl] and [tl, 1], and test

whether β(t) = 0 for almost all t ∈ [tl, 1] sequentially for all split points tl
with l = 1, . . . , p− 1.
A consistent estimator for β also requires some additional regularity as-

sumptions regarding the process X and the functional coe�cient β. These
requirements depend on the estimation context, see Hall and Horowitz (2007)

or Hall and Hosseini-Nasab (2006) for the classical approach based on func-

tional principal components and Crambes, Kneip and Sarda (2009); Cardot

et al. (2007b) for an estimator based on smoothing splines. Moreover, we do

not discuss the consequences arising from the discretization of the curves.

Hence, we assume that the number of observations points p is su�ciently

large compared to the number of observations n, such that the approxima-

tion error can be neglected. Formal arguments can also be found, for example,
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in Crambes, Kneip and Sarda (2009). Furthermore, since this paper as cur-

rently written is primarily practically oriented, we assume that the function

β can be represented using B-splines. A more rigorous development of the

corresponding theory is therefore left for future work.

3.1. Local test. For each l = 1, . . . , p−1 the null and alternative hypoth-

esis of the local test are

H0 : β(t) = 0 for almost all t ∈ [tl, 1],

H1 : β(t) 6= 0 for some t ∈ [tl, 1],
(3)

where, for the alternative, the set {t ∈ [tl, 1] |β(t) 6= 0} must not be a zero

set with respect to the Lebesgue measure.

The test can also be formulated di�erently by partitioning the integral in

Model (1) into two parts. To this end, let β1(t) = 1[0,tl](t)β(t) and β2(t) =
1[tl,1](t)β(t) denote the �rst and second part of β(t) splitted at tl. Model (1),

using that notation, is then equivalent to the splitted model

(4) Yi =

∫
β1(t)Xi(t) dt+

∫
β2(t)Xi(t) dt+ εi,

and the test (3) is then equivalent to test (globally) for β2 = 0 a.e. for

which several methodologies have been suggested in the literature. Here,

we build on the F test suggested by Kong, Staicu and Maity (2016) which

builds on the classical Karhunen-Loève decomposition. However, using their

approach straight away, it would be necessary to solve a relatively costly

eigenvalue problem twice for every local test. To avoid this, we instead use

a �xed spline basis which we have to assume to be appropriate for β. In
the following section, we brie�y explain how model (4) is �tted based on a

B-spline expansion of the splitted β.

3.1.1. Spline estimator for splitted model. Let the integer k denote the

dimension of the spline basis for the splitted model which should be chosen

such that the corresponding basis is �exible enough to expand β. A function

space corresponding to a cubic spline basis has at least four dimensions,

hence, the function space for the splitted β has at least eight dimensions

(k ≥ 8). However, when tl < 4 (or tl > p − 3), the matrix of a cubic spline

basis evaluated at 0, . . . , tl (or tl, . . . , 1, respectively) are not regular, why

these cases have to be treated separately.

Starting with the case l ∈ {4, . . . , p−3}, the corresponding knot sequence
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τ1, . . . , τk+4, spanning [0, 1], for the spline basis is given by

boundary knots:

τ1 = τ2 = τ3 = τ4 = 0

τk+1 = τk+2 = τk+3 = τk+4 = 1

interior knots:

τj =


tl if tl ∈ (τj−1 + 0.5 δ, τj−1 + 1.5 δ] ∧ τj−3 6= tl

τj−5 + 2δ if τj−1 = tl

τj−1 + δ otherwise,

where δ = 1
k−6 is the distance between interior knots. Intuitively, the above

knot sequence has four boundary knots at 0 and 1, respectively, k−7 equidis-
tant interior knots, where the interior knot which is closest to tl is replaced by
four knots at tl. The corresponding B-spline basis, by design, spans a function
space of twice continuously di�erentiable functions on the intervals (0, tl) and
(tl, 1) and a jump point (due to repeating the knot tl four times) at tl. We

denote by b(t) = (b1(t), . . . , bk(t))
> and BS(k, tl) = 〈b1, . . . , bk〉 the corre-

sponding basis functions and the linear space. Every function f ∈ BS(k, tl)
can be represented by a k-dimensional parameter θ, such that under the

assumption β ∈ BS(k, tl), model (1) can be rewritten as

Yi =

∫
Xi(t)b(t)

>θ dt+ εi.

If we approximate the integral by the corresponding Riemann sum (midpoint

rule), we get

Yi =
1

p

p∑
j=1

Xi(tj)b(tj)
>θ + εi.

Let B be the p × k matrix of the k spline functions evaluated at the p grid

values, that is Bij = bj(ti). The matrix B has a block structure, where

the upper-left l × m block B1 (m is the number of knots preceding the 4

knots for the split point) is the evaluated basis for the interval [0, tl] and the

lower-right (p− l)× (k −m) block B2 is the basis for (tl, 1]. The remaining

upper-right and lower-left blocks are zero matrices.

In the other case, where l < 4 or l > p−3, the cubic spline basis evaluated
at 0, . . . , tl (or tl, . . . , 1) is no longer invertible and, therefore, this singular

block is replaced by the identity matrix of size l (or p− l, respectively).



C. RUST/DIRECTED LOCAL TESTING IN THE FLM 7

A least-squares estimate of the spline coe�cients θ̂ can be obtained as

usual via

θ̂ = p
(
B>X>XB

)−1
B>X>y.

Under the null, the last k − m entries of θ are zero and the m remaining

non-zero entries of θ̂ in the restricted model become

θ̂1 = p
(
B1
>X>XB1

)−1
B1
>X>y.

Analogous to the �nite dimensional regression model, this results in the

projection matrices

PXB = XB
(
B>X>XB

)−1
B>X>

PXB1 = XB1

(
B1
>X>XB1

)−1
B1
>X>

for full and null model.

3.1.2. Test statistic. The F test in Kong, Staicu and Maity (2016) is

de�ned in terms of the residual sum of squares under the full and null models:

RSSfull = y>(In −PXB)y

RSSnull = y>(In −PXB1)y

and the test statistic is

(5) TF =
(RSSnull −RSSfull)/(k −m)

RSSfull/(n− k)
=

y>(PXB −PXB1)y/(k −m)

y>(In −PXB)y/(n− k)
.

Assuming that the discretization error is negligible, we can formulate the

following result.

Lemma 1. If for �xed k and l, β ∈ BS(k, tl) (the B-spline space with k
dimensions and split point at tl) and the errors are centered i.i.d. normal,

then, under the null, TF is F -distributed with k − m and n − k degrees of

freedom.

By requiring that the true parameter function is an element of BS(k, tl),
the above result is limited as is does not consider the more general case that

β ∈ L2. For many applications, this is a reasonable assumption, in particular

when the true parameter function is su�ciently smooth. The general case

requires that the model complexity (k in our notation) grows at a suitable

rate with the number of observations n. As mentioned above, developing

formal arguments for the general case, is left for future research.
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Algorithm 1 Directed sequential test

1: Let α denote global global signi�cance level and Hi
0 denote the i-th local null hypoth-

esis
2: Initialize i = 1
3: while i < p ∧Hi−1

0 was rejected do

4: test Hi
0 at level α

5: increment i
6: end while

7: Hi−1
0 then is the last rejected hypothesis and therefore conclude that β is statistically

di�erent from zero over the interval [0, ti−1] at level α.

3.2. Sequential directed test. Based on the above result, we can formulate

the testing procedure for detecting the interval [0, τ∗], on which the curves

signi�cantly in�uence the dependent variable Y . The central idea is to per-

form the above local test consecutively for every l ∈ {1, . . . , p− 1} and stop

once the test does not reject for the �rst time. The iterative procedure is

given in Algorithm 1. The following result shows that our directed testing

procedure controls the family-wise error rate (FWER) in the strong sense by

design.1

Theorem 1. The sequential test described in Algorithm 1 controls FWER

in the strong sense, that is, for any τ ∈ [0, 1] for which β1t>τ = 0 a.e., the

probability of the event that τ∗ > τ is bounded at global level α.

As shown in the proof, our test is an example for a test meeting the re-

quirements for the closed testing principle (Marcus, Peritz and Ruben, 1976).

It, therefore, by design controls FWER without any further corrections. For

the above result, it is even not necessary that β belongs to all BS(k, tl),
l = 1, . . . , p− 1. It is su�cient, if the requirements of Lemma 1 are ful�lled

for the �rst local test in the test sequence for which the null hypothesis is

true. This local test then takes the role of a gatekeeper, such that the size

of the overall procedure is maintained at level α.

4. Simulation study. In the following simulation study, we investigate

the performance of the sequential testing procedure. Apart from a numerical

validation of the above theoretical results, it is of interest to analyse power

properties of the test under di�erent scenarios, in particular with respect

1A test procedure is said to control the FWER in the strong sense, if the probability
of making at least one type I error is controlled at level α for every combination of true
or non-true individual null hypotheses, whereas the weak sense control refers to the case
where all individual null hypothesis have to be true.
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Figure 1. Coe�cient functions used in the simulation exercise.

to the distance to τ . The simulation exercise considers two di�erent Data

Generating Processes (DGPs) which can be seen as extreme scenarios. While

the �rst DGP is a step function that is useful to demonstrate how closely

the procedure can approach the point where the true β becomes zero, the

second DGP is a monotonically decreasing function which approaches zero

but will never be exactly zero (see Figure 1 for an illustration of both DGP).

The actual speci�cation for the �rst DGP is βstep = 1[0,0.5], and for the

second DGP, βsmooth is a continuously decreasing function based on B-splines
with 8 equidistant interior knots. While βsmooth by construction ful�lls the

assumptions of Lemma 1 for all individual tests, this is not true for βstep
due to the discontinuity at t = 0.5. It can be easily seen, however, that

βstep ful�lls the requirements of Lemma 1 for one individual test, namely

with split point tl = 0.5, which is the �rst individual test for which the null

hypothesis is true. Thus, both DGPs meet the necessary requirements for

the procedure.

For each DGP we consider three di�erent sample sizes (n = 250, 500, 1000)
and six di�erent signal-to-noise ratios (γ = 0.1, 0.5, 1, 2, 5, 10). For every

scenario, we generate 10 000 replications of n random tuples (Xi, Yi) via

Model (1), where the random curvesXi are i.i.d. realizations of the functional

random variable
∑

1<j<p Zj j
−2φj , where φj(t) =

√
2 cos((j − 1)πt) and in-

dependent standard normal Zj . In the appendix, we also consider random

curves with a di�erent covariance function that is more concentrated around

the diagonal. Although the actual number of discretization points p is of mi-

nor importance, the simulation study also considers two cases (p = 100, 300).
The error term εi is a centered normally distributed random variable with
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Table 1

Type-I error rates for DGP with β = βstep and at global level α = 0.05,

p = 100 p = 300
n 100 250 500 1000 100 250 500 1000

γ

0.1 0.010 0.009 0.011 0.013 0.010 0.009 0.010 0.015
0.5 0.012 0.015 0.015 0.020 0.014 0.016 0.017 0.019
1 0.018 0.018 0.018 0.021 0.018 0.018 0.018 0.018
2 0.021 0.021 0.023 0.021 0.020 0.019 0.022 0.024
5 0.025 0.024 0.024 0.026 0.024 0.026 0.026 0.028
10 0.026 0.024 0.026 0.028 0.028 0.028 0.029 0.028

variance σ2. The signal-to-noise ratio is speci�ed as the quotient of the vari-

ance of
∫
Xi(t)β(t) dt and the error variance σ2. For the test, one also has

to specify the number of spline basis functions for the expansion of β̂ which

we set to k = 12. The simulation is implemented in GNU R (R Core Team,

2020) and, together with an R-package implementing the testing procedure,

the code is part of the online supplement to this article.

Simulation results for the type-I error rate are summarized in Table 1 for

the DGP involving βstep.
2 In case of the �rst DGP, a type-I error occurs

if the test does not stop rejecting at or before t = 0.5. While every row

of the table corresponds to a di�erent signal-to-noise ratio γ, combinations
of sample size n and number of discretization points p are found in the

respective columns of the table. (Column 1-4 correspond to p = 100 whereas
Column 5-8 correspond to p = 300). The global signi�cance level here is

set to α = 0.05 and we can see that the procedure maintains size in all

constellations, as expected.

Another interesting investigation of the simulation exercise is power anal-

ysis. Figure 2 summarizes the results for di�erent scenarios. Left and right

column correspond to βstep and βsmooth, each row refers to a speci�c sample

size, and di�erent line types indicate signal-to-noise ratios (as outlined in

the legend). The line of the graph depicts the probability of a rejection up

to the respective value t ∈ [0, 1] on the horizontal axis. It can be seen that

sample size and signal-to-noise ratio have the expected in�uence on the rejec-

tion probability: the larger the sample size and the larger the signal-to-noise

ratio, the larger also is the power.

2Note that there can be no false positive for any of the tests H0 : β(t) = 0∀t ∈ [tl, 1]
for the DGP involving βsmooth since βsmooth(t) 6= 0∀t ∈ [0, 1].
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Figure 2. Rejection probabilities of the directed testing procedure for the two DGPs with
p = 300.
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5. Application. With the following real data exercise, we want to demon-

strate the applicability of the sequential testing method in practice. We are

drawing on data from a sports biomechanics experiment. Using the functional

data approach to model such measurements is quite natural and frequently

adopted by empirical researchers in biomechanics (Vanrenterghem et al.,

2012; Liebl et al., 2014; Hamacher, Hollander and Zech, 2016; Warmenhoven

et al., 2019).

The data shown in Figure 3 result from a sports biomechanics experiment

conducted at the biomechanics lab of the German Sport University, Cologne,

Germany. The sample comprises measurements of torque curves at the ankle

joint as well the strike index of n = 119 recreational runners, obtained while

they were running without shoes. Each curve describes the torque measured

at the right ankle joint in the sagittal pane during the stance phase, a stan-

dardized interval [0%, 100%] during which the foot has contact to the ground.
Using an a�ne transformation, the individual stance phases were standard-

ized such that the initial ground contact takes place at t = 0% while the

foot leaves the ground at t = 100%. Moreover, the torque measures are stan-

dardized by the participants' body weights to make the curves comparable.

The right panel of Figure 3 shows the distribution of the so-called strike

index, describing the center of pressure (CoP) at initial ground contact with

respect to the long axis of the foot (Cavanagh and Lafortune, 1980; Altman

and Davis, 2012). The strike index is used to classify runners into the groups

rear foot, mid foot or fore food strikers, the majority of runners belonging

to the group of rear foot strikers.

The torque curves as a whole show a similar pattern over all runners with

a negative value throughout the largest part of the stance phase, representing

a torque in the plentar�exion direction which is associated with the accelera-

tion into the moving direction. Many curves, however, at the very beginning

of the stance phase are positive which indicates a torque in dorsi�exion di-

rection, associated with a controlled lowering of the fore food immediately

after ground contact.

It is therefore obvious that the shape of the torque curves depend on the

center of pressure at initial ground contact. Runners with a very low strike

index (center of pressure is very close to the heel) are likely to have a torque

curve which is positive in the beginning of the stance phase, while runners

with a higher strike index (center of pressure is located more in the center

of the foot's long axis) need a negative torque at the ankle joint in order to

accelerate the body mass upwards as well as into the moving direction. Since

it is not clear at which part of the stance phase the torque curves are related

to the strike index, our sequential testing procedure can help to address this
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question.

With torque curves forming the functional predictor and the strike index

as the scalar dependent variable, we applied the sequential test to �nd out

for which part of the stance phase the dependence between torque curves and

strike index is statistically di�erent from zero. At �rst, however, we present

the result of an application of a smoothing splines estimation (Crambes,

Kneip and Sarda, 2009) of the corresponding functional linear model. Since

the data is not standardized, we also include an intercept in the model.

Figure 4 shows in the upper panel an estimated functional coe�cient based

on a smoothing parameter for which we set the e�ective degrees of freedom to

5. As expected, the estimate shows a negative relationship between torque

curves and strike index and from 25% of the stance phase, the estimated

functional coe�cient approaches zero. As lined out in the introduction, such

a point estimate cannot say anything about statistical signi�cance of the

result.

The result of applying our sequential testing procedure at global level

α = 0.05 is given in the lower panel of Figure 4. The grey area indicates

the region where the test rejects the null of no association which in this

application turns out to be the �rst 14% of the stance phase. The solid and

dashed black lines depict the estimation result of the splitted model. This

result makes sense if we once more take a look at the torque curves in Figure 3

where we can see that in particular at the �rst 13% the shape of the curves

vary the most. In the later stance phase, the curves have a rather similar

pattern across individuals. Consequently, it is not very likely that the center

of pressure during the �rst ground contact is related to the torque in later

stance phase.

6. Conclusion. In this paper, we propose a new testing method for

the functional linear model in order to facilitate interpretability of model

estimates. The proposed methodology can be helpful to detect a subregion

of the functional predictors' domain where the relationship to a scalar out-

come variable is statistically signi�cant. The testing method builds on the

(global) test of association in the functional linear model and performs this

test sequentially on a sequence of decreasing domains.

The key results of our approach follow from the closed testing principle

which ensures that the family-wise error rate (FWER) is maintained in the

strong sense without any further corrections. For the theoretical analysis, we

make some limiting assumptions in particular about the functional coe�cient

and the discretization error. Very likely, these assumptions can be relaxed to

make the procedure valid in a more general setting. However, this requires
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a more thorough theoretical analysis that can be a future direction for this

paper. In addition, the method can also be generalized to test against a

general β0 ∈ L2 and, in principle, it is also not necessary to start the test at

the left boundary of the domain. The procedure's numerical properties are

also evaluated in a simulation exercise. We show that the global type-I error

is maintained and explore the method's power properties under di�erent

scenarios with respect to sample size and signal-to-noise ratio.

We demonstrate the practical use of our method by applying it to data

from a sports biomechanics experiment with recreational runners. In this ex-

ample, we use a functional linear model to measure the dependency between

the strike index as scalar outcome variable and torque curves measured at

the ankle join as functional predictor. Using the proposed sequential test, we

can show that the dependency between strike index and torque curves is sta-

tistically signi�cant only at the very beginning of the stance phase (0%-14%)

which corresponds to the �rst time after the foot's ground contact.
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Appendix.

Proof of Lemma 1. Under the null and the prerequisites of the lemma,

we have that β ∈ BS(k, tl) with β(t) = 0 for t ∈ (tl, 1]. The model then can

then be written as

Yi =

∫ tl

0
β(t)Xi(t) dt+ εi,

which in matrix notation (note that we assume the dense sampling design)

for the sample is

y =
1

p
XB1θ1 + ε.

Now, observe that the kernel of the projection matrix PXB−PXB1 is given

by the space spanned by the columns of B1 and, similarly, the kernel of

In −PXB is the column space of B.

It follows that

y>(PXB −PXB1)y = ε>(PXB −PXB1) ε

and

y>(In −PXB)y = ε>(In −PXB) ε

which are scaled (by the variance of ε) versions of χ2-distributed variables

with k−m and n− k degrees of freedom, since the matrices (PXB−PXB1)
and (In−PXB) have rank k−m and n−k. It is easy to see that the matrices

(PXB −PXB1) and (In −PXB) are orthogonal projections, completing the

proof.

Proof of Theorem 1. We will show that our sequential testing procedure

is an example for a closed test, such that the FWER is controlled in the

strong sense by design.

The family of hypotheses in our testing procedures is {Hi}i=1,...,p. Now,

consider Hi for some i ∈ {1, . . . , p} that is rejected at local level α. It is
easy to see that all possible intersection hypotheses involving Hi are the

hypotheses H1, . . . ,Hi which, by the design of our testing procedure, must

have been rejected already at local level α. With the closed testing principle

(Marcus, Peritz and Ruben, 1976), it follows thatHi can be rejected at global

level α.

Additional Simulation Results. To complement the simulation results of

the main text, we present in this appendix additional simulation results

with the same setup as in Section 4, but with di�erent signal-to-noise ratios
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Table 2

Type-I error rates for DGP with β = βstep and at global level α = 0.05,

p = 100 p = 300
n 100 250 500 1000 100 250 500 1000

γ

0.1 0.021 0.029 0.026 0.032 0.020 0.027 0.030 0.032
0.2 0.027 0.031 0.032 0.037 0.022 0.030 0.033 0.033
0.4 0.033 0.034 0.036 0.032 0.033 0.031 0.037 0.035
0.6 0.037 0.028 0.035 0.032 0.028 0.038 0.034 0.034
0.8 0.034 0.034 0.034 0.033 0.040 0.034 0.037 0.038
0.9 0.040 0.037 0.035 0.036 0.040 0.037 0.035 0.034

γ = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9 and with functions Xi that are generated from

a p-dimensional spline basis with independent standard normal coe�cients.

The covariance function of these curves is only di�erent from zero close to

the diagonal and it holds that E[Xi(t)Xi(s)] = 0 for |t− s| > 4δ, where δ is
the distance between adjacent knots. It can be observed that the power in

this setting is much higher, which is a consequence of the curves' covariance

structure. Even in the case where the signal-to-noise ratio is 10 and the

number of observations is 1000, the power in the setting of Section 4 is lower

than for any of the examples shown in Figure 5.
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Figure 5. Rejection probabilities of the directed testing procedure for the two DGPs with
p = 300.
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