DIRECTED LOCAL TESTING IN THE FUNCTIONAL
LINEAR MODEL

By CHRISTOPH RUST

University of Regensburg

Abstract In this paper we develop a directed testing procedure
for the coefficient function of the Functional Linear Model (FLM)
with a scalar response. The suggested procedure provides local inter-
pretability of the regression function in the sense that it is possible
to infer from the data a subinterval of the random function’s do-
main where the relationship between random curves and the scalar
outcome variable differs from a null. The test is motivated from a
situation where it can be assumed that the relationship is strongest
at the beginning of the domain and it is of interest to find a subset of
the domain where the relationship is statistically significant. Our real
data application in the field of biomechanics is an example for such
a situation. We show theoretical validity of our proposed procedure
and evaluate the method by means of a simulation study.

1. Introduction. With the increasing availability of data collected on a
dense grid, functional data analysis (FDA) has become an important field in
statistics in recent years. The corresponding literature comprises numerous
theoretical contributions and various interesting applications. In particular,
the functional linear regression model with a scalar dependent variable is
quite popular and has seen many applications in different areas (see Ullah
and Finch, 2013, for an overview of various fields of application).

It is well known, however, that regression models with a functional predic-
tor belong to the class of ill-posed inversion problems and that every estimate
has to use some sort of regularisation. As a result, local inference in the func-
tional linear model is a difficult issue. More specifically, Cardot et al. (2007a)
show that it is impossible to derive a CLT for the estimated functional coef-
ficient function. As a consequence, it is also not possible to draw pointwise
inference about the functional coefficient, even asymptotically.

This does not mean that statistical tests for the parameter function are
not possible in general. Indeed, there are several approaches to test whether
the coefficient function deviates globally from a given null hypothesis. For in-
stance, Cardot et al. (2003); Cardot, Goia and Sarda (2004) use properties of
the cross-covariance operator, Swihart, Goldsmith and Crainiceanu (2014);
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Kong, Staicu and Maity (2016) adapt classical methods such as likelihood-
ratio and F tests to the functional case, and Gonzalez-Manteiga et al. (2012)
build on bootstrap techniques to construct such a global test. With these
tests, however, it is only possible to find out whether the relationship be-
tween the functional predictors and the scalar outcome variable deviates
from a prespecified null. The most important specific case, for instance, is
the test of association in the functional linear model, where the null hypoth-
esis corresponds to the zero function as functional coefficient.

Though, if the global test leads to a rejection, it is still not clear, whether
the functional coefficient deviates from the null on the whole domain or is
only different on a subpart of the domain. Therefore, a rejection of the global
test does not uncover parts of the domain where the functional coefficient
differs almost everywhere from a null coefficient. Evidently, this is an impor-
tant shortcoming of the scalar-on-function regression model for practitioners
that are interested in identifying subdomains where a functional covariate is
related significantly to the scalar response.

An important contribution into this direction is the paper of Hall and
Hooker (2016). Using their method, it is possible to consistently estimate
the support of the coefficient function (that is, the the part of the domain
where the coefficient function is different from zero). Very briefly, they also
discuss the possibility of constructing a confidence interval for the boundaries
of the support, based on the bootstrap. However, in their discussion, they
also raise the issue that using the bootstrap is not appropriate in the context
of smoothing. Again, this leaves the practitioner only with a point estimate.

We present an approach that shows one possibility to overcome these
limitations under some additional assumptions about the structure of the
coefficient function. Our testing procedure then is able to uncover a subin-
terval of the functional domain where the coefficient function is statistically
different from zero almost everywhere. The underlying idea is to apply the
global test sequentially on a family of subsets of the domain such that the
family-wise error rate is controlled. The performance of available approaches
for the global test is compared in Tekbudak et al. (2019), showing favor-
able properties of the F' test suggested by Kong, Staicu and Maity (2016).
Therefore, our method builds on this F' test, although it might be replaced
by other versions of the global test.

Inference in the functional regression model with scalar response has also
been addressed by several other authors. In a generalised model framework,
Miiller and Stadtmiiller (2005) propose (simultaneous) confidence bands for
the coefficient function. These confidence bands though also reflect the global
test and cannot be interpreted pointwise. Reiss and Ogden (2007) compute
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confidence intervals to illustrate the pointwise variability of the estimated
coefficients in a simulation study which, however, cannot be used for infer-
ence. Imaizumi and Kato (2019) also propose simultaneous confidence bands
which are based on weakened requirements for the coverage probability. It
is, however, in general difficult to construct confidence regions for random
elements in infinite dimensional Hilbert spaces (Choi and Reimherr, 2018).

The literature related to the scalar-on-function regression model is exten-
sive and we refer to Reiss et al. (2017) for an overview of different methods.
For readers with a general interest in FDA, the books by Ramsay and Sil-
verman (2005), Ferraty and Vieu (2006), Horvath and Kokoszka (2012), and
Hsing and Eubank (2015) provide a broad overview of available methods.

The remainder of this article is organized as follows. In Section 2, we in-
troduce the model framework. The main results are given in Section 3, where
we extend the global F' test to a spline basis and introduce the sequential
testing procedure. In that section, we also present our theoretical results. In
Section 4 we illustrate the properties of the suggested method by means of a
simulation study, and present a real data application in Section 5. Section 6
concludes.

2. Model framework. We consider the functional linear model (FLM)
with a scalar response variable

(1) Yi=Bo +/ B(t)X;(t) dt + &,

D
reflecting the dependency between observations of a scalar variable, Y7,...,Y),,
and a functional covariate X1, ..., X, the latter taking values in the Hilbert

space L?(D). Without loss of generality, we set D = [0,1] and assume for
notational simplicity that F(Y;) = 0 and E(X;) = 0 € L?, omitting the
intercept, Bo hereafter. For the error term we assume that the ¢;’s are i.i.d.
centered (E(g;) = 0) random variables with variance Var(g;) = 02 < oo,
and are independent of the X;. The function-valued slope parameter 3 € L?
quantifies the effect of the functional predictors on the scalar outcome vari-
able, and, very often is of central interest. Due to the reasons lined out above,
available methods only leave a practitioner with a point estimate and the
information whether the relationship between X; and Yj is significant at a
given confidence level. While the method of Hall and Hooker (2016) makes
it also possible to estimate a subinterval [0, 0] of the original domain where
B(t) # 0, it cannot tell whether the function over the estimated support is al-
most everywhere statistically different from zero at a given significance level.
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This, however, is of practical importance for the structural interpretation of
B.

In some applications, it can be reasonable to assume that if there is a
linear dependence between the scalar response and the functional covariate,
it must be strongest at one boundary of the domain. For instance, if one can
assume that || is a monotonically decreasing function, it is then possible
to construct a sequential test procedure that is capable to identify a subset
of the domain, [0,7*] € [0,1] where at a prespecified level «, it holds that
the function B(t) # 0 for almost every t € [0,7*]. Although in our view the
assumption of a monotonic |5| is the most important case in practice, one
can also get qualitatively the same results under the weaker assumption 6.1
of Hall and Hooker (2016).

Before we introduce the test approach, let us define the basic notation.
To this end, it is assumed that all realizations of the functional covariate are
observed on the same grid values t1,...,%,, with t; = ﬁ, t; —ti_1 = %. In
the n x p matrix X, we collect the functional observations and the n-vector
Y holds the observations of the dependent variable.

3. Testing procedure and theoretical results. To formulate our test
procedure, we make the following assumption about the coefficient function

3.

The functional coefficient S is continuous on [0, 1], the absolute
(2) value, ||, is monotonically decreasing, and there exists a 7 € [0,1]
such that B(¢t) # 0 for almost all ¢ € [0, 7].

Under this assumption, the following procedure is able to find the largest
number 7* € [0,7] such that [ is statistically different from zero on the
interval [0,7*] at a predefined significance level .. The core idea of the test
procedure is to split the domain into two parts, [0,¢] and [t;, 1], and test
whether 8(t) = 0 for almost all ¢ € [t;, 1] sequentially for all split points ¢
withli=1,...,p— 1.

A consistent estimator for 5 also requires some additional regularity as-
sumptions regarding the process X and the functional coefficient 8. These
requirements depend on the estimation context, see Hall and Horowitz (2007)
or Hall and Hosseini-Nasab (2006) for the classical approach based on func-
tional principal components and Crambes, Kneip and Sarda (2009); Cardot
et al. (2007b) for an estimator based on smoothing splines. Moreover, we do
not discuss the consequences arising from the discretization of the curves.
Hence, we assume that the number of observations points p is sufficiently
large compared to the number of observations n, such that the approxima-
tion error can be neglected. Formal arguments can also be found, for example,
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in Crambes, Kneip and Sarda (2009). Furthermore, since this paper as cur-
rently written is primarily practically oriented, we assume that the function
B can be represented using B-splines. A more rigorous development of the
corresponding theory is therefore left for future work.

3.1. Local test. Foreachl=1,...,p—1 the null and alternative hypoth-
esis of the local test are

Hy : 5(t) = 0 for almost all ¢ € [t;, 1],

) Hy : B(t) # 0 for some t € [t;,1],
where, for the alternative, the set {t € [¢;,1]| B(t) # 0} must not be a zero
set with respect to the Lebesgue measure.

The test can also be formulated differently by partitioning the integral in
Model (1) into two parts. To this end, let 81(t) = 1jg4,(t)5(t) and Ba(t) =
1p,,1)(t)B(t) denote the first and second part of 5(t) splitted at ¢;. Model (1),
using that notation, is then equivalent to the splitted model

(4:) Y, = /Bl (t)Xl(t) dt + /,BQ(t)XZ(t) dt + €i,

and the test (3) is then equivalent to test (globally) for f2 = 0 a.e. for
which several methodologies have been suggested in the literature. Here,
we build on the F' test suggested by Kong, Staicu and Maity (2016) which
builds on the classical Karhunen-Loéve decomposition. However, using their
approach straight away, it would be necessary to solve a relatively costly
eigenvalue problem twice for every local test. To avoid this, we instead use
a fixed spline basis which we have to assume to be appropriate for 5. In
the following section, we briefly explain how model (4) is fitted based on a
B-spline expansion of the splitted .

3.1.1. Spline estimator for splitted model. Let the integer k denote the
dimension of the spline basis for the splitted model which should be chosen
such that the corresponding basis is flexible enough to expand . A function
space corresponding to a cubic spline basis has at least four dimensions,
hence, the function space for the splitted 5 has at least eight dimensions
(k > 8). However, when t; < 4 (or ¢; > p — 3), the matrix of a cubic spline
basis evaluated at 0,...,% (or t;,...,1, respectively) are not regular, why
these cases have to be treated separately.

Starting with the case [ € {4,...,p— 3}, the corresponding knot sequence
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T, ..., Tk+d4, Spanning [0, 1], for the spline basis is given by

boundary knots:
TT=Tg=T3=14=0
Thtl = Th+2 = Th+3 = Thta = 1
interior knots:

t ift € (Tj_1 +0.56, Tj—1+ 1.5 5] N Tj—3 #*t
Tj = Tj_5—‘r25 iij_l =1

Tj—1+90 otherwise,

where § = T£6 is the distance between interior knots. Intuitively, the above
knot sequence has four boundary knots at 0 and 1, respectively, k—7 equidis-
tant interior knots, where the interior knot which is closest to ¢; is replaced by
four knots at ¢;. The corresponding B-spline basis, by design, spans a function
space of twice continuously differentiable functions on the intervals (0, ¢;) and
(t1,1) and a jump point (due to repeating the knot ¢; four times) at ¢;. We
denote by b(t) = (b1(t),...,bx(t))" and BS(k,t;) = (b1,...,by) the corre-
sponding basis functions and the linear space. Every function f € BS(k,t;)
can be represented by a k-dimensional parameter 6, such that under the
assumption 8 € BS(k,t;), model (1) can be rewritten as

Y; = /Xi(t)b(t)TG dt + ¢;.

If we approximate the integral by the corresponding Riemann sum (midpoint
rule), we get

1 p
Y, = ) > Xi(tj)b(t;) "0+ .
j=1

Let B be the p x k£ matrix of the k spline functions evaluated at the p grid
values, that is B;; = bj(t;). The matrix B has a block structure, where
the upper-left [ x m block By (m is the number of knots preceding the 4
knots for the split point) is the evaluated basis for the interval [0, #;] and the
lower-right (p — 1) x (k —m) block By is the basis for (¢;,1]. The remaining
upper-right and lower-left blocks are zero matrices.

In the other case, where [ < 4 or [ > p— 3, the cubic spline basis evaluated
at 0,...,% (or t;,...,1) is no longer invertible and, therefore, this singular
block is replaced by the identity matrix of size [ (or p — [, respectively).
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A least-squares estimate of the spline coefficients 9 can be obtained as
usual via

f=pB'X'XB) 'B'Xy.

Under the null, the last k& — m entries of 6 are zero and the m remaining
non-zero entries of 6 in the restricted model become

6, =p(B:. X'XB;) 'B; Xy.

Analogous to the finite dimensional regression model, this results in the
projection matrices

Pxp = XB(B'X"XB) 'BTX"
Pxp, = XB;(B; ' X'XB;) 'B; X'
for full and null model.

3.1.2. Test statistic. The F test in Kong, Staicu and Maity (2016) is
defined in terms of the residual sum of squares under the full and null models:
RSSwn =y (I, — PxB)y
RSSyu =y ' (In — Pxs,)y

and the test statistic is
(RS Snun — RSStun)/(k —m) y' (Pxs — Pxs,)y/(k —m)
RSStn/(n — k) y' (I, - PxB)y/(n —k)

Assuming that the discretization error is negligible, we can formulate the
following result.

(5) Tr =

LEMMA 1. If for fized k and l, 5 € BS(k,t;) (the B-spline space with k
dimensions and split point at t;) and the errors are centered i.i.d. normal,
then, under the null, Tr is F-distributed with k — m and n — k degrees of
freedom.

By requiring that the true parameter function is an element of BS(k,t;),
the above result is limited as is does not consider the more general case that
€ L?. For many applications, this is a reasonable assumption, in particular
when the true parameter function is sufficiently smooth. The general case
requires that the model complexity (k in our notation) grows at a suitable
rate with the number of observations n. As mentioned above, developing
formal arguments for the general case, is left for future research.



C. RUST/DIRECTED LOCAL TESTING IN THE FLM 8

Algorithm 1 Directed sequential test

1: Let o denote global global significance level and H¢ denote the i-th local null hypoth-
esis
Initialize i = 1
while i <p A H™' was rejected do
test HY at level o
increment ¢
end while
Héfl then is the last rejected hypothesis and therefore conclude that S is statistically
different from zero over the interval [0,¢;—1] at level .

3.2. Sequential directed test. Based on the above result, we can formulate
the testing procedure for detecting the interval [0,7*], on which the curves
significantly influence the dependent variable Y. The central idea is to per-
form the above local test consecutively for every [ € {1,...,p — 1} and stop
once the test does not reject for the first time. The iterative procedure is
given in Algorithm 1. The following result shows that our directed testing
procedure controls the family-wise error rate (FWER) in the strong sense by
design.!

THEOREM 1.  The sequential test described in Algorithm 1 controls FWER
in the strong sense, that is, for any T € [0,1] for which 51y~ = 0 a.e., the
probability of the event that 7" > 7 is bounded at global level «.

As shown in the proof, our test is an example for a test meeting the re-
quirements for the closed testing principle (Marcus, Peritz and Ruben, 1976).
It, therefore, by design controls FWER without any further corrections. For
the above result, it is even not necessary that § belongs to all BS(k,t;),
[=1,...,p— 1. It is sufficient, if the requirements of Lemma 1 are fulfilled
for the first local test in the test sequence for which the null hypothesis is
true. This local test then takes the role of a gatekeeper, such that the size
of the overall procedure is maintained at level a.

4. Simulation study. In the following simulation study, we investigate
the performance of the sequential testing procedure. Apart from a numerical
validation of the above theoretical results, it is of interest to analyse power
properties of the test under different scenarios, in particular with respect

LA test procedure is said to control the FWER in the strong sense, if the probability
of making at least one type I error is controlled at level « for every combination of true
or non-true individual null hypotheses, whereas the weak sense control refers to the case
where all individual null hypothesis have to be true.
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Ficure 1. Coefficient functions used in the simulation ezercise.

to the distance to 7. The simulation exercise considers two different Data
Generating Processes (DGPs) which can be seen as extreme scenarios. While
the first DGP is a step function that is useful to demonstrate how closely
the procedure can approach the point where the true 8 becomes zero, the
second DGP is a monotonically decreasing function which approaches zero
but will never be exactly zero (see Figure 1 for an illustration of both DGP).
The actual specification for the first DGP is Bstep = 1jg0.5, and for the
second DGP, Bsnootn is a continuously decreasing function based on B-splines
with 8 equidistant interior knots. While SBgpootn by construction fulfills the
assumptions of Lemma 1 for all individual tests, this is not true for Bstep
due to the discontinuity at t = 0.5. It can be easily seen, however, that
Bstep fulfills the requirements of Lemma 1 for one individual test, namely
with split point ¢; = 0.5, which is the first individual test for which the null
hypothesis is true. Thus, both DGPs meet the necessary requirements for
the procedure.

For each DGP we consider three different sample sizes (n = 250, 500, 1000)
and six different signal-to-noise ratios (v = 0.1,0.5,1,2,5,10). For every
scenario, we generate 10000 replications of n random tuples (X;,Y;) via
Model (1), where the random curves X; are i.i.d. realizations of the functional
random variable >, _;_, Z; i72¢;, where ¢;(t) = v/2cos((j — 1)mt) and in-
dependent standard normal Z;. In the appendix, we also consider random
curves with a different covariance function that is more concentrated around
the diagonal. Although the actual number of discretization points p is of mi-
nor importance, the simulation study also considers two cases (p = 100, 300).
The error term ¢; is a centered normally distributed random variable with
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TABLE 1
Type-I error rates for DGP with 8 = Bstep and at global level o = 0.05,

p =100 p =300
n 100 250 500 1000 | 100 250 500 1000
gl
0.1 0.010 0.009 0.011 0.013 | 0.010 0.009 0.010 0.015
0.5 0.012 0.015 0.015 0.020 | 0.014 0.016 0.017 0.019
1 0.018 0.018 0.018 0.021 | 0.018 0.018 0.018 0.018
2 0.021 0.021 0.023 0.021 | 0.020 0.019 0.022 0.024
5 0.025 0.024 0.024 0.026 | 0.024 0.026 0.026 0.028
10 0.026 0.024 0.026 0.028 | 0.028 0.028 0.029 0.028

variance o2. The signal-to-noise ratio is specified as the quotient of the vari-
ance of [ X;(t)B(t)dt and the error variance o2. For the test, one also has
to specify the number of spline basis functions for the expansion of B\ which
we set to k = 12. The simulation is implemented in GNU R (R Core Team,
2020) and, together with an R-package implementing the testing procedure,
the code is part of the online supplement to this article.

Simulation results for the type-1 error rate are summarized in Table 1 for
the DGP involving 5step.2 In case of the first DGP, a type-1 error occurs
if the test does not stop rejecting at or before ¢ = 0.5. While every row
of the table corresponds to a different signal-to-noise ratio «, combinations
of sample size n and number of discretization points p are found in the
respective columns of the table. (Column 1-4 correspond to p = 100 whereas
Column 5-8 correspond to p = 300). The global significance level here is
set to @ = 0.05 and we can see that the procedure maintains size in all
constellations, as expected.

Another interesting investigation of the simulation exercise is power anal-
ysis. Figure 2 summarizes the results for different scenarios. Left and right
column correspond to Bstep and Bsmootn, €ach row refers to a specific sample
size, and different line types indicate signal-to-noise ratios (as outlined in
the legend). The line of the graph depicts the probability of a rejection up
to the respective value ¢ € [0,1] on the horizontal axis. It can be seen that
sample size and signal-to-noise ratio have the expected influence on the rejec-
tion probability: the larger the sample size and the larger the signal-to-noise
ratio, the larger also is the power.

*Note that there can be no false positive for any of the tests Ho : B(t) = OVt € [t;,1]
for the DGP involving Bemootn Since Bsmootn(t) # 0V € [0, 1].
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5. Application. With the following real data exercise, we want to demon-
strate the applicability of the sequential testing method in practice. We are
drawing on data from a sports biomechanics experiment. Using the functional
data approach to model such measurements is quite natural and frequently
adopted by empirical researchers in biomechanics (Vanrenterghem et al.,
2012; Liebl et al., 2014; Hamacher, Hollander and Zech, 2016; Warmenhoven
et al., 2019).

The data shown in Figure 3 result from a sports biomechanics experiment
conducted at the biomechanics lab of the German Sport University, Cologne,
Germany. The sample comprises measurements of torque curves at the ankle
joint as well the strike index of n = 119 recreational runners, obtained while
they were running without shoes. Each curve describes the torque measured
at the right ankle joint in the sagittal pane during the stance phase, a stan-
dardized interval [0%, 100%] during which the foot has contact to the ground.
Using an affine transformation, the individual stance phases were standard-
ized such that the initial ground contact takes place at t = 0% while the
foot leaves the ground at ¢t = 100%. Moreover, the torque measures are stan-
dardized by the participants’ body weights to make the curves comparable.
The right panel of Figure 3 shows the distribution of the so-called strike
index, describing the center of pressure (CoP) at initial ground contact with
respect to the long axis of the foot (Cavanagh and Lafortune, 1980; Altman
and Davis, 2012). The strike index is used to classify runners into the groups
rear foot, mid foot or fore food strikers, the majority of runners belonging
to the group of rear foot strikers.

The torque curves as a whole show a similar pattern over all runners with
a negative value throughout the largest part of the stance phase, representing
a torque in the plentarflexion direction which is associated with the accelera-
tion into the moving direction. Many curves, however, at the very beginning
of the stance phase are positive which indicates a torque in dorsiflexion di-
rection, associated with a controlled lowering of the fore food immediately
after ground contact.

It is therefore obvious that the shape of the torque curves depend on the
center of pressure at initial ground contact. Runners with a very low strike
index (center of pressure is very close to the heel) are likely to have a torque
curve which is positive in the beginning of the stance phase, while runners
with a higher strike index (center of pressure is located more in the center
of the foot’s long axis) need a negative torque at the ankle joint in order to
accelerate the body mass upwards as well as into the moving direction. Since
it is not clear at which part of the stance phase the torque curves are related
to the strike index, our sequential testing procedure can help to address this
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procedure (lower panel), where the rejection Tegion is shaded in grey.
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question.

With torque curves forming the functional predictor and the strike index
as the scalar dependent variable, we applied the sequential test to find out
for which part of the stance phase the dependence between torque curves and
strike index is statistically different from zero. At first, however, we present
the result of an application of a smoothing splines estimation (Crambes,
Kneip and Sarda, 2009) of the corresponding functional linear model. Since
the data is not standardized, we also include an intercept in the model.
Figure 4 shows in the upper panel an estimated functional coefficient based
on a smoothing parameter for which we set the effective degrees of freedom to
5. As expected, the estimate shows a negative relationship between torque
curves and strike index and from 25% of the stance phase, the estimated
functional coefficient approaches zero. As lined out in the introduction, such
a point estimate cannot say anything about statistical significance of the
result.

The result of applying our sequential testing procedure at global level
a = 0.05 is given in the lower panel of Figure 4. The grey area indicates
the region where the test rejects the null of no association which in this
application turns out to be the first 14% of the stance phase. The solid and
dashed black lines depict the estimation result of the splitted model. This
result makes sense if we once more take a look at the torque curves in Figure 3
where we can see that in particular at the first 13% the shape of the curves
vary the most. In the later stance phase, the curves have a rather similar
pattern across individuals. Consequently, it is not very likely that the center
of pressure during the first ground contact is related to the torque in later
stance phase.

6. Conclusion. In this paper, we propose a new testing method for
the functional linear model in order to facilitate interpretability of model
estimates. The proposed methodology can be helpful to detect a subregion
of the functional predictors’ domain where the relationship to a scalar out-
come variable is statistically significant. The testing method builds on the
(global) test of association in the functional linear model and performs this
test sequentially on a sequence of decreasing domains.

The key results of our approach follow from the closed testing principle
which ensures that the family-wise error rate (FWER) is maintained in the
strong sense without any further corrections. For the theoretical analysis, we
make some limiting assumptions in particular about the functional coefficient
and the discretization error. Very likely, these assumptions can be relaxed to
make the procedure valid in a more general setting. However, this requires



C. RUST/DIRECTED LOCAL TESTING IN THE FLM 15

a more thorough theoretical analysis that can be a future direction for this
paper. In addition, the method can also be generalized to test against a
general By € L? and, in principle, it is also not necessary to start the test at
the left boundary of the domain. The procedure’s numerical properties are
also evaluated in a simulation exercise. We show that the global type-I error
is maintained and explore the method’s power properties under different
scenarios with respect to sample size and signal-to-noise ratio.

We demonstrate the practical use of our method by applying it to data
from a sports biomechanics experiment with recreational runners. In this ex-
ample, we use a functional linear model to measure the dependency between
the strike index as scalar outcome variable and torque curves measured at
the ankle join as functional predictor. Using the proposed sequential test, we
can show that the dependency between strike index and torque curves is sta-
tistically significant only at the very beginning of the stance phase (0%-14%)
which corresponds to the first time after the foot’s ground contact.
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Appendix.

Proof of Lemma 1. Under the null and the prerequisites of the lemma,
we have that g € BS(k,t;) with 8(t) =0 for ¢t € (¢;,1]. The model then can
then be written as

t
Yi = ﬁ(t)Xz(ﬂ dt—FEi,
0

which in matrix notation (note that we assume the dense sampling design)
for the sample is

1
y = *XBlel +e.
p

Now, observe that the kernel of the projection matrix Pxg — Pxp, is given
by the space spanned by the columns of By and, similarly, the kernel of
I, — Pxg is the column space of B.

It follows that

y' (PxB —PxB,)y =¢' (PxB —PxB,)€

and
y' (I, —Pxp)y =¢' (I, — PxB)e

which are scaled (by the variance of €) versions of x2-distributed variables
with k —m and n — k degrees of freedom, since the matrices (Pxp — PxB;)
and (I, — Pxp) have rank k—m and n—k. It is easy to see that the matrices
(PxB — PxB,) and (I, — PxB) are orthogonal projections, completing the
proof. O

Proof of Theorem 1. We will show that our sequential testing procedure
is an example for a closed test, such that the FWER is controlled in the
strong sense by design.

The family of hypotheses in our testing procedures is {H;}i—1,.,. Now,
consider H; for some i € {1,...,p} that is rejected at local level a. It is
easy to see that all possible intersection hypotheses involving H; are the
hypotheses Hy, ..., H; which, by the design of our testing procedure, must
have been rejected already at local level a. With the closed testing principle
(Marcus, Peritz and Ruben, 1976), it follows that H; can be rejected at global
level a. O

Additional Simulation Results. To complement the simulation results of
the main text, we present in this appendix additional simulation results
with the same setup as in Section 4, but with different signal-to-noise ratios
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TABLE 2

Type-1I error rates for DGP with B = Bstep and at global level o = 0.05,

p =100 p =300

100 250 500 1000 | 100 250 500 1000
gl
0.1 0.021 0.029 0.026 0.032 | 0.020 0.027 0.030 0.032
0.2 0.027 0.031 0.032 0.037 | 0.022 0.030 0.033 0.033
0.4 0.033 0.034 0.036 0.032 | 0.033 0.031 0.037 0.035
0.6 0.037 0.028 0.035 0.032 | 0.028 0.038 0.034 0.034
0.8 0.034 0.034 0.034 0.033 | 0.040 0.034 0.037 0.038
0.9 0.040 0.037 0.035 0.036 | 0.040 0.037 0.035 0.034

v =0.1,0.2,0.4,0.6,0.8,0.9 and with functions X; that are generated from
a p-dimensional spline basis with independent standard normal coefficients.
The covariance function of these curves is only different from zero close to
the diagonal and it holds that E[X;(¢)X;(s)] = 0 for |t — s| > 46, where ¢ is
the distance between adjacent knots. It can be observed that the power in
this setting is much higher, which is a consequence of the curves’ covariance
structure. Even in the case where the signal-to-noise ratio is 10 and the
number of observations is 1000, the power in the setting of Section 4 is lower

than for any of the examples shown in Figure 5.
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FIGURE 5. Rejection probabilities of the directed testing procedure for the two DGPs with
p = 300.
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